34 research outputs found

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    Controllers, observers, and applications thereof

    Get PDF
    Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also apply to state feedback and state observer based controllers, as well as linear active disturbance rejection (ADRC) controllers. Parameterization simplifies the use of ADRC. A discrete extended state observer (DESO) and a generalized extended state observer (GESO) are described. They improve the performance of the ESO and therefore ADRC. A tracking control algorithm is also described that improves the performance of the ADRC controller. A general algorithm is described for applying ADRC to multi-input multi-output systems. Several specific applications of the control systems and processes are disclosed

    Protective effect of paeoniflorin against oxidative stress in human retinal pigment epithelium in vitro

    Get PDF
    Purpose: This study was conducted to determine whether paeoniflorin (PF) could prevent H(2)O(2)-induced oxidative stress in ARPE-19 cells and to elucidate the molecular pathways involved in this protection. Methods: Cultured ARPE-19 cells were subjected to oxidative stress with H(2)O(2) in the presence and absence of PF. The preventive effective of PF on reactive oxygen species (ROS) production and retinal pigment epithelium (RPE) cell death induced by H(2)O(2) was determined by 2', 7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA) fluorescence and 3-(4, 5dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium bromide (MTT) assay. The ability of PF to protect RPE cells against ROS-mediated apoptosis was assessed by caspase-3 activity and 4', 6-diamidino-2-phenylindole (DAPI) staining. Furthermore, the protective effect of PF via the mitogen-activated protein kinase (MAPK) pathway was determined by western blot analysis. Results: PF protected ARPE-19 cells from H(2)O(2)-induced cell death with low toxicity. H(2)O(2)-induced oxidative stress increased ROS production and caspase-3 activity, which was significantly inhibited by PF in a dose-dependent manner. Pretreatment with PF attenuated H(2)O(2)-induced p38MAPK and extracellular signal regulated kinase (ERK) phosphorylation in human RPE cells, which contributed to cell viability in ARPE-19 cells. Conclusions: This is the first report to show that PF can protect ARPE-19 cells from the cellular apoptosis induced by oxidative stress. The results of this study open new avenues for the use of PF in treatment of ocular diseases, such as age-related macular degeneration (AMD), where oxidative stress plays a major role in disease pathogenesis.Biochemistry & Molecular BiologyOphthalmologySCI(E)PubMed1ARTICLE373-783512-35221

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    A stability study of the active disturbance rejection control problem by a singular perturbation approach

    No full text
    Abstract. We study the stability characteristic of the active disturbance rejection control for a nonlinear, time-varying plant. To this end, the closed-loop system is reformulated in a form that allows the singular perturbation method to be applied. Since singular perturbation approach enables the decomposition of the original system into a relatively slow subsystem and a relatively fast subsystem, the composite Lyapunov function method is used to determine the stability properties of the decomposed subsystems. Our result shows that the system is exponentially stable, upon which a lower bound for the observer bandwidth is established. Mathematics Subject Classification: 34H05, 34D15, 93C95, 93C1

    A Stability Study of the Active Disturbance Rejection Control Problem by a Singular Perturbation Approach

    No full text
    We study the stability characteristic of the active disturbance rejection control for a nonlinear, time-varying plant. To this end, the closed-loop system is reformulated in a form that allows the singular perturbation method to be applied. Since singular perturbation approach enables the decomposition of the original system into a relatively slow subsystem and a relatively fast subsystem, the composite Lyapunov function method is used to determine the stability properties of the decomposed subsystems. Our result shows that the system is exponentially stable, upon which a lower bound for the observer bandwidth is established

    A Stability Study of the Active Disturbance Rejection Control Problem by a Singular Perturbation Approach

    No full text
    We study the stability characteristic of the active disturbance rejection control for a nonlinear, time-varying plant. To this end, the closed-loop system is reformulated in a form that allows the singular perturbation method to be applied. Since singular perturbation approach enables the decomposition of the original system into a relatively slow subsystem and a relatively fast subsystem, the composite Lyapunov function method is used to determine the stability properties of the decomposed subsystems. Our result shows that the system is exponentially stable, upon which a lower bound for the observer bandwidth is established
    corecore